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The problem of restoring the heat load of a plain bearing in a nonstationary fric- 
tion period is solved by temperature measurements within the bushing. 

One of the most important service characteristics of bearings is the friction moment. 
Meanwhile, direct measurement of this quantity is fraught with significant difficulties of 
technological nature. 

The energy expended on friction in a plain bearing is determined by the work of the 
friction moment. Different energy-conversion processes (in nonthermal form) such as emis- 
sion of phonons (acoustic waves), photons (triboluminescence), electrons (exoelectron emis- 
sion), etc., occur during the sliding of solids. However, these components are so small 
that an assumption about the transfer of all the energy into heat is ordinarily used [i]~ 

The rate of heat liberation in the frictional contact zone can be represented as q = 
kpv. 

Therefore, the friction moment correlates with the magnitude of the total heat libera- 
tion in the contact zone. 

The possibility of recovering the heat liberation and the friction moment in the slider 
contact, respectively, by means of values of the bearing temperature which can be measured 
more simply as compared with the friction moment is examined in this paper. 

Let us consider the bearing represented in Fig. i. Sliding occurs over the contact sur- 
face between the elements 1 and 2; the bushing is connected rigidly to the bearing housing. 
The shaft 1 and the housing 3 are made of metal, while the bushing is made of an antifriction 
polymer or composite material. 

An algorithm for solving the nonstationary problem of heat conduction for a plain bear- 
ing was proposed in [2]. Taking the same assumptions as in [2], we set up the problem of 
determining the heat load. 

Find the total heat-liberation rate Q(t) and the corresponding temperature distribution 
T(r, @, t) from the system 

a2T aT 6~T OT = A (r) - -  + B (r) + C (r) 
Or Or 2 ~ 0~2 ' (i) 

r ~ < r < r ~ ,  0<~<~,  O<t~t~; 

~ (r~) c (rl) a_~_~ (t_!) + 2=r~s (Fs ( 0 - -  To) = Q (0 + 
at 

+ r~Xl f OT (r~,or ~' t) d~, (2) 

0 

T(r~, ~, t) = ~ (t); (3 )  
when ]~l ~> ~o 

~ OT(r 2, ~, t) : ~ ( T ( r 2 ,  ~, t)--ro), (4) 
Or 
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~, .OT (r,, +, t). = - -  a (T (r~, +, l) - -  To), 
dr 

Fig. 1. Diagram of a friction unit: I) 
shaft; 2) bushing; 3) housing. ~o is the 
contact angle between the shaft and the 
bushing, and i k are temperature measure- 
ment points. 

o~<+~<a, (5) 

OT (r, O, t) aT(r, n, t) 
Oq> 09 , r~ <~ r <.~ r~, (6) 

T(r, +, 0)-~ To; (7) 

under known additional information for fixed R 

T(R, ~, t)=[(q~, t); r , < a < r  3. (8) 

The usual conjugate conditions are satisfied on the bushings-housing boundary 

~,~ OT(r3--O, r t) = ~,2 OT(r3 + O, % t) T(r , - -O,  % t )=  T(r, + O, % t); 
Or Or ' 

and A(r) B(r), C(r), c(r), o(r), ~S, 4, To, and f(cp, t) are known. 

We replace the problem by an extremal problem on the minimum of the root-mean-square func- 
tional 

~tm 
diO(t)l= .]' j" iT(R, 9, t)--I(9,  t)l~dgdt (9) 

0 0 

in solutions of the system (1)-(7). 

It is natural to use one of the gradient methods that are applied extensively in solving 
similar problems [3-5]. 

To determine the gradient of the functional (9), we consider the problem conjugate to 
(1)-(7) [3]. The condition I~] ~o for r = r2 = r s introduces definite difficulties in the - 
derivation of the boundary condition for the conjugate problem. Thus, in contrast to [4], 
where a system of linear algebraic equations is obtained to match the values of the Lagrange 
multipliers on the boundary, we arrive at a system of integrodifferential equations from the 
necessary conditions for an extremum in our case 

O (A(r,) , ( r , ,  t ))--B(r~),(r~,  t)l=O, (10) _ ~ p ( r l ) c ( r l )  b~((~,Ot ~" 0 +2~rlat~(r~, % t) + r~ -~r 

L~ J" "q(r2, 9, t )dw+ A(r~)~(t~, ~, t ) :O ,  (ii) 
0 

n(r2, ~, t) and ~(r2, ~, t) are Lagrange multipliers. 

Assuming ~(r2, ~, O) = O, we find n(r2, ~, t) from (i0): 
t 

ssP(rx) c(rx) -~r (A(r2),(r, ,  % x))exp(--Ox)--B(r,)~(r~, % x)] dx, (121 
0 

where P = 2~r,~s/(SsP(rl)c(r,)). 

1474 



Substituting (12) into (11), we have 

~0 f a 
(A(r~) r ~, ~))] exp(--P~) aT =A(r~) r ~, t) sso(rl) c(rO (13) 

Differentiating this latter with respect to t, we finally obtain 

-- A (r~) s s p (rl) c (rl) aCs (r~, % t) ~0 a 
�9 fi- 2s~r,~sA (r2) ~s (r~, % t) H- r,~, S [B (r2) ~ (G, ~, t) - -  -~r (A (r=) ~ (r2, % t)) ] • 

Ot 
• dq) = 0. 0 (14) 

Taking account of condition (13) the conjugate boundary-value problem is written as 

a~ a 2 a a~b 
- -  O---t = Or - T  (A(r) r  -~r (B(r) r C(r) - -  -F 2[T(R, q% t ) - - f l  a ( r - -R) ,  (15) 

r 2 < r < r : ,  O < ( p < n ,  O < t < t n i ;  
when [':PI > % 

B(r.)r % t ) - -  ~ --~ (A(r..)~(r~, ~, t ))= A(r2)~ ~(r~, % t), (16) 
Or 

a A (r~)____~ 
B(ra)r % t)----~r~. (A(r~)r % t ) ) =  ~ ~(r~, q), t), (17) 

O~(r, O, t )_ar ~, t ) = o ,  (18) 
a~ a~ 

1, if r = R, 
~(r, % tin)=0, 6 ( r - - R ) =  0, if r--/=R. (19) 

Taking into account B(r) = A(r)/r and C(r) = A(r)/r = and making the change of variable 
= A~/r, we obtain the system 

a~lV--A(r) a2~ ' B(r) O~ a~  - 2A( r ) [T (R ,  +, t ) - - f l S ( r - - R ) ,  (20) 
at -07 ~ -87-r + C (r) b-~ + r 

r 2 < r < r ~ ,  O < ( p < ~ ,  O < t < t m ;  
when lq)l < q~o 

- ~ '  ar +, t) 0~.~ (t) + 2~q%~s(t) = r~,~ J" d~; (21) 
- - -  S s p ( r l )  C ( r l )  O---T~ Or 

o 
when[~] i> q)o 

~,10~-(r~, ~, t) : ~ ( r ~ ,  % 0 ;  (22) 
Or 

when [qo] ~ 
(23) 

a#(r, O, t) _ a~(r, u, t )=  O; (24) 
a~ a~ 

~(r, +, t~)= 0. (25) 

Upon i n t r o d u c i n g  the v a r i a b l e  "r = t m -- t the conjugate problem (20) - (25 )  i s  solved by 
us ing the same c a l c u l a t i o n a l  procedure as f o r  problem ( 1 ) - ( 7 ) .  

The g rad ien t  of  the f u n c t i o n a l  (9) i s  found from the formula 

J '[Q(t)]= r.~(r~, % t) X~ (26) 

The method of conjugate gradients, which has the best characteristics for solving incorrectly 
posed inverse problems [3, 4] as compared with the method of steepest descent, was selected 
as the numerical method for minimizing the functional (9). 

Different f~nctions of the time Q(t) under the following geometricdimensions: r~ = 12.5 
mm, r= = 13 mm, r~ = 14.5 mm, r4 = 29.5 mm were selected as the exact solution for the model 
problem. Steel was the material for the shaft and the race, and the filled fluoroplastic 
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Fig. 2. Results of a numerical experiment on recovering the spe- 
cific heat-liberation rate q(t): i, 2) given dependences of q(t): 
I) q(t) = 14"103 + 8t 2 + 480t; 2) q(t) = 103(14 + 6sin(~t/20)); 3, 
4) dependences of the maximal temperature Tmax(r , 0, t) for the 
functions 1 and 2 for q(t), respectively; i', 2') the recovered 
functions q(t); t, min; q, W/m 2. 

Fig. 3. Recovery of the total heat-liberation rate Q(t) by means 
of values of the temperature measured with an error: i) the given 
function Q(t); 2) the temperature Tmax measured with error; 3) 
Q(t) recovered by using ~ self-regulating algorithm; 4) solution 
of the inverse heat-conduction problem for large iteration num- 
bers; 5) solution of the inverse heat-conduction problem obtained 
by the method of iterational regularization; Q, W/m 2. 

F4K20 for the bushing, with co = 2.67"106 J/mS'~ and % = 0.39 W/m'~ for the F4K20, and cp = 
3.48"106 J/m3"~ and % = 25.35 W/m'~ for the steel, and a s is determined for the shaft veloc- 
ity v = 1 m/sec. 

The total heat-liberation rate Q(t) is determined from the following formula: 

c[,o 

Q(t)=2q J" q(% t) dqD, 
0 

where q(~, t) is the specific heat=liberation rate. Computations were performed for 

Iq(t),  I~1~ ~o 
q (~, t) = .[ o I~i > ~o 

and, correspondingly, Q(t) = 2r2~oq(t). 

The temperature was given on the circle R = 13.6 m at the mesh nodes by the results of 
solving the direct problem. The solution of the inverse boundary-value problem is repre- 
sented in Fig. 2 for the experimental information given exactly. The approximate solution 
is sufficiently close to the exact. 

For perturbed initial data 

T* (% t) = T ( %  t) + 8ow, (27) 

where 80 = 0.03Tma x and w is a random variable with uniform distribution law (--I ~ w ~ i), 
the approximate solution is strongly oscillatory in nature for large iteration numbers (Fig. 
3). This is the natural behavior of the iteration solution of an incorrectly posed inverse 
problem. 

In this connection, it is expedient to halt the iteration process according to the 
condition [3]: 

J [O (t)l ~ 6~, (28) 
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= o* (% t) dq~dt, 
0 0 

(29) 

where o2( , t) is the variance of the function T*(~, t). This condition is satisfied by 
the seventh iteration. The corresponding results are represented by curve 5 in Fig. 3. 

In order to obtain a more exact smooth solution of the inverse problem, we use a self- 
regularizing algorithm [3]. The solution is sought in the class of continuously differenti- 
able functions satisfying the condition 

t 

Q(t) = ~ dQ dT. (30) 
3 dT 
0 

Introducing the function 

we obtain 

t 

s~ ,  (t) = q (t), t C 1o, t,.]. 

The iteration sequence is then constructed 

Q'~+~ (t) = Q'~ (t) - ~ ~k (t), 
I - -  ~ - - [  where Sk (t) = J0. (t) n- ?k = (t) is the conjugate direction, 

7-o = O; ~ : J [Q'~+'] = rain J [Q'~ - -  ~J'~,]. 

I n t e g r a t i n g  (31) ,  we f i n a l l y  o b t a i n  
l 

Q~+' (t) = Q~ (0 - ~,, S $~ (0 dt + c , .  
0 

If the value of the desired function is not refined for t = 0, then C~ = 0. 
of the desired function at the left end is refined, then 

c~ = Q'~+' (o) - Q'~ (o) = - ~ ~ (o) = .~ (@-, (o) + ~ ~-~). 

(31) 

(32) 

If the value 

Application of this regularization procedure permits a sufficiently smooth solution to 
be obtained. The halt according to condition (28) is reached at the 35th iteration in this 
case. The corresponding results are represented by curve 3 in Fig. 3. For a three-dimensional 
mesh N r = 20, N~ = 20, N t = 60 the machine time expended for execution of one iteration was 
2 min for an M-4030 computer. Around 3 min is expended for a self-regularizing algorithm. 

The results of numerical modeling show that the accuracy of recovering the heat-liber- 
ation rate Q(t) by the self-regularizing algorithm is commensurate with the accuracy of the 
assignment of the initial data. 

The method proposed can be used for temperature diagnostics of the friction characteris- 
tics of machine and mechanism friction units. 

NOTATION 

k, friction coefficient; P, specific pressure; v, slip velocity; q, specific heat-lib- 
eration rate; Q(t), total heat-liberation rate in the frictional contact zone; To, initial 
temperature; T, bearing temperature; Ts, shaft surface temperature; t, running time; r, ~, 
polar coordinates; tm, testing time; Ss, shaft cross-sectional area; p, density; c, specific 
heat; ~i, heat conduction of the bushing materiaU; ~2, heat conduction of the shaft and race 
material; as, heat-elimination coefficient from the shaft surface; ~, heat-elimination coef- 
ficient from the free surfaces of the bushing and race; q, @, Lagrange multipliers; Bk, itera- 
tion parameter of the regularization algorithm; and Nr, N~, Nt, quantity of mesh nodes along 
the radius, angle, and time, respectively. 
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STEADY-STATE HEAT CONDUCTION FOR A REGION BOI~CDED BY A SPNERE 

AND A TANGENT PLANE 

B. A. Vasil'ev UDC 536.24.01:517.946 

I~ is shown that the problem of potential theory for a half-space with a spherical 
cavity with boundary conditions of the first and third kinds reduces to an ordi- 
nary differential equation which can be solved efficiently by numerical methods. 

It is well know~ that boundary conditions of the third kind prevent the separation of 
variables in the general case for boundary-value problems of potential theory. However, as 
shown in [i, 2], bipolar coordinates in a plane can be used to solve certain problems involv- 
ing off-center cylinders with a boundary condition of the third kind on the surface of one of 
the cylinders. In the case of contacting spheres, a system of degenerate bispherical coordi- 
nates can be used [3]~ in which the Fourier--Bessel integral transform method reduces the prob- 
lem to an ordinary differential equation for the transform. We consider a similar case, when 
one of the spheres becomes a half-space. 

Statement of the Problem. We consider the steady-state temperature distribution between 
a sph-ere and a tangent plane with the boundary conditions such that the sphere is at a given 
constant temperature and the plane is cooled according to Newton's law hy a medium at zero 
temperature (Fig. i). 

In a system of degenerate bispherical corodinates (5, B, ~ ) related to cylindrical coor- 
einates (z, 0, ~) by 

2Ri 
z + ~  - - ,  + ip (1) 

the equation of a sphere of radius R becomes ~ = i, and the equation of the tangent plane 
will be fl = O. For the case of rotational symmetry, the problem reduces to the solution of 
Laplace's equation in the form 

3 ( =____5 aT ) O ( ~ OT)=o, fl<~<l, 0~a<c~, 

a 

! , / /  / . . . .  ' / / , -  . . . . . .  Y,/1 

Fig. i. Half-space with a spherical 
cavity. 
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